Federally Qualified Health Centers and Private Practice Performance on Ambulatory Care Measures

L. Elizabeth Goldman, MD, MCR, Philip W. Chu, MS, Huong Tran, MS, Max J. Romano, BA, Randall S. Stafford, MD, PhD

Background: The 2010 Affordable Care Act relies on Federally Qualified Health Centers (FQHCs) and FQHC look-alikes (look-alikes) to provide care for newly insured patients, but ties increased funding to demonstrated quality and efficiency.

Purpose: To compare FQHC and look-alike physician performance with private practice primary care physicians (PCPs) on ambulatory care quality measures.

Methods: The study was a cross-sectional analysis of visits in the 2006–2008 National Ambulatory Medical Care Survey. Performance of FQHCs and look-alikes on 18 quality measures was compared with private practice PCPs. Data analysis was completed in 2011.

Results: Compared to private practice PCPs, FQHCs and look-alikes performed better on six measures \((p<0.05)\); worse on diet counseling in at-risk adolescents \((26\% \text{ vs } 36\%, \ p=0.05)\); and no differently on 11 measures. Higher performance occurred in ACE inhibitors use for congestive heart failure \((51\% \text{ vs } 37\%, \ p=0.004)\); aspirin use in coronary artery disease \((CAD)\) \(57\% \text{ vs } 44\%, \ p=0.004\); \(\beta\)-blocker use for CAD \((59\% \text{ vs } 47\%, \ p=0.01)\); no use of benzodiazepines in depression \((91\% \text{ vs } 84\%, \ p=0.008)\); blood pressure screening \((90\% \text{ vs } 86\%, \ p<0.001)\); and screening electrocardiogram \((EKG)\) avoidance in low-risk patients \((99\% \text{ vs } 93\%, \ p<0.001)\). Adjusting for patient characteristics yielded similar results, except that private practice PCPs no longer performed better on any measures.

Conclusions: FQHCs and look-alikes demonstrated equal or better performance than private practice PCPs on select quality measures despite serving patients who have more chronic disease and socioeconomic complexity. These findings can provide policymakers with some reassurance as to the quality of chronic disease and preventive care at Federally Qualified Health Centers and look-alikes, as they plan to use these health centers to serve 20 million newly insured individuals.

Introduction

The 2010 Patient Protection and Affordable Care Act aims to extend health insurance coverage by 2019 to 32 million currently uninsured people. Access to primary care for the newly insured has been a major concern because of primary care shortages, particularly for Medicaid recipients. The federal government allocated $11 billion to expand operating capacity and capital projects at designated community health centers that receive enhanced Medicare and Medicaid reimbursement under Section 330 of the Public Health Services Act: these include Federally Qualified Health Centers (FQHCs) and look-alikes (health centers that function similarly to FQHCs, but without federal designation and eligibility for Section 330 grant support). These FQHC and look-alikes currently provide comprehensive care to more than 20 million patients in 38 states, 85% of whom are uninsured or Medicaid recipients. Under the Federal Social Security Act of 1989 and 1991, these FQHC and look-alikes receive Medicare and Medicaid reimbursement on a per-visit basis based on cost.

Studies demonstrate that FQHCs reduce inpatient and emergency department utilization for Medicaid patients and increase health education for uninsured patients, appropriate care for diabetes, and access to can-
cancer, blood pressure, and cholesterol screening. Only a few recent studies have provided data comparing the effectiveness of FQHC and look-alikes with other providers regarding the quality and efficiency of ambulatory chronic disease care and preventive care. Comparisons of providers that serve varieties of patient groups may be prone to undervalue the quality of care at facilities that serve medically and socially complex patients, given the additional challenges those patients and providers face. Comparing processes of care, such as whether an at-risk patient receives appropriate medications, should obviate the need to adjust for the severity of illness (i.e., “risk-adjustment,” as these interventions reflect care that is indicated for all eligible patients). However, when time is limited, as is often the case in the outpatient setting, patients and providers frequently face competing demands. Adherence to recommended chronic disease and preventive care measured in performance assessments can therefore be more challenging in patients with multiple comorbidities.

These challenges are further heightened in FQHCs and look-alikes where patients frequently have limited health literacy, housing instability, and food insecurity. Addressing the call from the IOM to directly compare effectiveness across healthcare systems and designs, the present study aims to assess how the quality of chronic disease and preventive care provided by physicians at FQHCs and look-alikes compared with private practice primary care physicians. The study compares the quality performance of physicians at FQHCs and look-alikes with that of private practice primary care physicians through the use of established outpatient measures of healthcare quality in a national sample of patient visits. Based on prior literature demonstrating the greater complexity of patients served at FQHCs, the authors hypothesized a priori that FQHC and look-alikes might have lower performance on quality measures that could be accounted for by patient social and medical complexity.

Methods

Data Set

The 2006–2008 National Ambulatory Medical Care Survey (NAMCS), conducted by the National Center for Health Statistics, collects information on ambulatory medical care provided by FQHC and look-alikes and nonfederal, office-based, direct-care physicians. Starting in 2006, the NAMCS sampled visits from FQHCs, look-alikes, and Urban Indian FQHCs based on information from the Health Resources Services Administration’s Bureau of Primary Health Care Uniform Data System and the Indian Health Service. These data are widely used in government and academic research to describe trends in outpatient care and were designed for this purpose.

Patient visits were sampled using a multistage probability design, involving geographic primary sampling units, then physician practices within primary sampling units and patient visits within physician practices. Sampled physicians were selected from the masterfiles of the American Medical Association and the American Osteopathic Association. Additionally, starting in 2006, NAMCS sampled patient visits from 104 FQHCs and look-alikes within primary sampling units. FQHCs and look-alikes were oversampled to obtain reliable national estimates. The sampling rate varies from a 100% sample of visits during a randomly selected week for very small practices to a 20% sample for very large practices as determined in a pre-survey interview. Physicians were instructed to keep a daily listing of all patient visits during the assigned reporting week. This list was the sampling frame to indicate the visits for which data were recorded.

The sample of patient visits with FQHC and look-alike physicians was included in the NAMCS public use file and used for this analysis. A total of 29,392 patient record forms were received from the physicians participating in the NAMCS in 2006, a total of 32,778 in 2007, and 28,741 in 2008. Of these, the response rates were lower for private practice primary care physicians (64%) than FQHC and look-alike physicians (86.2%). For each patient visit, sampling weights were assigned and used to produce national estimates that describe the utilization of ambulatory medical care services in the U.S.

The National Center for Health Statistics Research Ethics Review Board approves the NAMCS annually and has waived informed consent requirements and authorization for medical record release. The current study was conducted under an exemption from the University of California San Francisco Committee on Human Subjects.

Survey Data Elements

Physicians and their staff completed paper surveys for each visit, including information on the reason for the patient’s visit, diagnoses, new and continued medications, and demographic data for a random sample of visits during a 1-week period. Trained medical coders coded the survey responses. The survey also provides statistics on the demographic characteristics of patients and services provided, including information on diagnostic procedures, patient management, and planned future treatment. Diagnostic information is coded according to the ICD-9-CM. The NAMCS uses the Lexicon Pluss to classify medications.

Nonresponse rates for most questions pertinent to the present study were <5%. For records lacking age and gender data, the National Center for Health Statistics assigned values based on multiple imputation using physician specialty, geographic region, and three-digit ICD-9-CM codes for primary diagnosis. Further, NCHS quality control for medical and drug coding involved an independent verification procedure for 10% of records in each survey year. For records with coding discrepancies, records were reviewed and adjudicated. Coding error rates ranged between 0.2% and 1.4% for various survey items. However, race/ethnicity had up to 20% missing data requiring imputation, and therefore race/ethnicity was not included in our main analysis.
Sample
All visits to physicians at FQHCs and look-alikes or private practice offices eligible for measurement of a given quality measure were included in the sample.

Type of Provider
Federally qualified health centers, look-alikes, which are organizations that meet the eligibility requirements of FQHCs and cost-based reimbursement but do not receive the PHS Section 330 grant funding, and Urban Indian FQHCs, which are a subset of nonprofit community health centers in the Urban Indian Health Program that received FQHC designation with all its benefits, were included in the FQHC category. Private practice primary care offices included solo and group practice setting.

Quality Measures
This analysis evaluates quality of care using 18 previously established quality measures.20,21 These measures were developed using visit-based information available in the NAMCS public use files, and have been updated to reflect changes in clinical guidelines. Performance on each measure was defined as the proportion of eligible patients receiving guideline-congruent care, with a higher proportion representing greater concordance with care guidelines.

The measures fit four categories: (1) pharmacologic management of common chronic diseases, including atrial fibrillation, heart failure, coronary artery disease, asthma, and depression (nine measures); (2) preventive counseling regarding smoking cessation, diet, and exercise for individuals at high risk of coronary artery disease by age, gender, and comorbidities (five measures); (3) appropriate use of screening tests for blood pressure, electrocardiogram, and urinalysis (three measures); and (4) appropriate prescribing in elderly patients (one measure). The measures exclude those patients with comorbidities that would complicate guideline adherence (e.g., adults with gastrointestinal bleeding, alcoholism, or cerebral hemorrhage in assessing anti-thrombotic use in atrial fibrillation). In some instances, care was considered adherent to the quality measure if a similar therapy was provided (e.g., warfarin rather than aspirin in coronary artery disease).

This methodology relies on chart documentation to capture comorbidities. Contraindications may be underestimated as they may not always be documented in medical records. Two measures from the initial list of 20 published in the literature, appropriate antibiotic selection for urinary tract infection (n = 45 at FQHCs and look-alikes) and otitis media (n = 18 at FQHCs and look-alikes), were excluded because of limited sample sizes at the FQHCs and look-alikes.

Statistical Methods
Descriptive statistics of the study population were performed by provider type and by quality measure. All analyses were completed using SAS, version 9.2, in December 2011. Bivariate associations between provider type and percentage compliance across quality measures were described using chi-square tests and survey weights (Proc Surveyfreq). Finally, multivariate logistic regression models (Proc Surveylogistic) were fit, with the unit of analysis being the patient visit, and taking into account the complex nature of the survey design. This included accounting for the multistaged clustering of the data, assignment of unequal probabilities of selection of sample unit, stratification, and use of survey weights adjusted for prespecified patient or population characteristics that were associated with performance in the univariate comparisons (p < 0.20) and contributed to visit complexity; these were age, gender, patient education level, and number of patient comorbidities. In addition, adjustments were made for year and geographic region. Comparisons were limited to quality measures with >50 visits at both FQHCs and look-alikes and private practice offices to calculate reliable national estimates (a prespecified threshold).

Table 1. Patient characteristics, %

<table>
<thead>
<tr>
<th>Patient characteristic</th>
<th>FQHC (n visits = 8,442)</th>
<th>PCP (n visits = 22,691)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;2</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2–&lt;18</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>18–65</td>
<td>60</td>
<td>47</td>
</tr>
<tr>
<td>&gt;65</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>60</td>
<td>56</td>
</tr>
<tr>
<td>Male</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>16</td>
<td>60</td>
</tr>
<tr>
<td>Medicare</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>Medicaid</td>
<td>45</td>
<td>15</td>
</tr>
<tr>
<td>Othera (missing = 1321)</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Total # of chronic conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>1–2</td>
<td>40</td>
<td>36</td>
</tr>
<tr>
<td>3–4</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>≥5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Poverty in ZIP code (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;5</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>5–9.9</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td>10.0–19.9</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>≥20</td>
<td>37</td>
<td>13</td>
</tr>
<tr>
<td>Have bachelor’s degree (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;12.8</td>
<td>37</td>
<td>23</td>
</tr>
<tr>
<td>12.8–19.7</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>19.8–31.7</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>≥31.7</td>
<td>14</td>
<td>25</td>
</tr>
</tbody>
</table>

*aIncludes patient payment, no charge, and other
FQHC, federally qualified health centers, federally qualified health center look-alikes, or urban Indian federally qualified health centers;
PCP, private practice primary care providers
A sensitivity analysis was performed in which the sample included patient visits to all physicians in private practice and at the community health centers (including surgical and medical specialties, and obstetricians), as some patients see these physicians for chronic disease and receive preventive care from them as well. A sensitivity analysis was also performed that adjusted for patient race-ethnicity, as race-ethnicity has been associated with receipt of quality of care. Of note, up to 20% of the race-ethnicity data were imputed, limiting the strength of the conclusions that can be made from these data.

**Results**

The sample consisted of 31,133 visits (9606 from 2006, 10,645 from 2007, and 10,882 from 2008), 22,691 of which were to private practice primary care physicians and the remaining 8442 visits were to physicians at FQHCs and look-alikes. Patients seen at FQHCs and look-alikes were more often Medicaid-insured, more likely to be obese or depressed, and lived in ZIP codes with a higher percentage of poverty and a lower median household income (Table 1). FQHC primary care physicians were more often trained general medicine and family practice, and worked in urban locations (Table 2).

Overall, performance on the 18 quality measures was variable across U.S. primary care physicians (Table 3). Adherence ranged from 19% to 99%. The adherence to guidelines for seven of 18 (39%) quality measures was <50% for both FQHCs and look-alikes and private practice primary care physicians, with the lowest adherence for preventive counseling measures and the greatest adherence for statin use in coronary artery disease. Compared with private practice primary care physicians, without adjusting for patient characteristics, FQHCs and look-alikes performed higher on six measures ($p<0.05$); lower on one measure ($p<0.05$); and no differently on 11 measures. FQHCs and look-alikes demonstrated higher performance in two performance categories (pharmacologic management of common chronic diseases and appropriate use of screening tests). Private practice primary care physicians performed better on one measure (diet counseling in at-risk adolescents, $p<0.05$), but this was no longer significant after adjustment.

When including visits to all private practice physician offices in our sensitivity analysis, the findings were similar (Table 4). In the unadjusted analysis, FQHCs and look-alikes performed better on five measures ($p<0.05$) and no differently on 13 measures. In the adjusted analysis, FQHCs and look-alikes demonstrated higher performance on three additional measures for chronic disease and lower performance on diet counseling for at-risk adolescents ($p<0.05$). In the sensitivity analysis comparing FQHCs and look-alikes and private practice primary care physicians, additionally adjusting for race–ethnicity did not change the direction or the significance of our findings (data not shown).

**Discussion**

The present study is the first national study to compare ambulatory care performance in chronic disease and preventive care at FQHCs and look-alikes versus private practice primary care offices. Although overall adherence to guidelines varied and was lowest for preventive counseling, physicians working at FQHCs and look-alikes demonstrated greater adherence to guidelines than primary care physicians at private practices on six of 18 quality measures and, except for diet counseling in at-risk adolescents, similar adherence on the remaining measures despite providing care to patients with limited or no insurance and a higher burden of comorbidities.
Overall, adherence was greatest for many of the chronic disease care measures, likely in part because of the strength of the evidence supporting these measures. Alternatively, physicians demonstrated lower adherence to the provision of exercise counseling to adults and adolescents at high risk of coronary artery disease. This may be due, in part, to there being insufficient evidence supporting the impact of exercise counseling on patient health outcomes.25 Additionally, documentation practices may differ across measures, accounting for differences in performance between measures of chronic disease and preventive care. The current study was not able to address whether documentation completeness differed between FQHCs and look-alikes and private practice physicians. The importance of thorough physician documentation will increase as fiscal incentives tied to performance expand.

The current data do not specifically identify mechanisms by which the FQHCs and look-alikes achieved higher performance, yet understanding potential mechanisms would help policymakers focus interventions. Furthermore, FQHCs and look-alikes differ in many respects from private practice offices. For one, patients at FQHCs and look-alikes are much more likely to be insured by Medicaid or uninsured, groups that traditionally have less access to subspecialty care,2 and therefore, chronic diseases such as coronary artery disease, congestive heart failure, and diabetes are more likely to be managed in primary care. Clinics that receive FQHC and look-alike designation4 have access to resources such as enhanced Medicare and Medicaid reimbursement and reduced-price medications for outpatients, and FQHCs have access to PHS Section 330 grants (Section 330 of the Public Health Service Act defines federal grant funding opportunities for organizations to provide care to underserved populations)26 medical malpractice coverage, and federal loan guarantees for capital improvements.

<table>
<thead>
<tr>
<th>Quality measure</th>
<th>No. of patient visits (n)</th>
<th>FQHC %a</th>
<th>PCP %a</th>
<th>FQHC vs PCP, unadjusted OR (95% CI)</th>
<th>FQHC vs PCP, AOR (95% CI)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antithrombotic use in atrial fibrillation</td>
<td>30 156</td>
<td>60 61</td>
<td>1.06 (0.50, 2.24)</td>
<td>2.04 (0.33, 12.7)</td>
<td></td>
</tr>
<tr>
<td>Ace inhibitor use in congestive heart failure</td>
<td>130 466</td>
<td>51 37</td>
<td>1.96 (1.24, 3.07)*</td>
<td>2.95 (1.65, 5.27)*</td>
<td></td>
</tr>
<tr>
<td>Aspirin use in CAD</td>
<td>134 466</td>
<td>57 44</td>
<td>2.87 (1.39, 5.93)*</td>
<td>5.08 (1.98, 13.1)*</td>
<td></td>
</tr>
<tr>
<td>β-Blocker use in CAD</td>
<td>123 440</td>
<td>59 47</td>
<td>2.01 (1.18, 3.42)*</td>
<td>3.11 (1.58, 6.16)*</td>
<td></td>
</tr>
<tr>
<td>Statin use in CAD</td>
<td>1108 3624</td>
<td>48 46</td>
<td>1.11 (0.81, 1.51)</td>
<td>1.25 (0.90, 1.75)</td>
<td></td>
</tr>
<tr>
<td>Inhaled corticosteroids in asthma in adults</td>
<td>378 703</td>
<td>61 54</td>
<td>1.28 (0.86, 1.92)</td>
<td>1.05 (0.65, 1.71)</td>
<td></td>
</tr>
<tr>
<td>Inhaled corticosteroids in asthma in children</td>
<td>196 595</td>
<td>66 64</td>
<td>1.08 (0.66, 1.76)</td>
<td>0.98 (0.53, 1.81)</td>
<td></td>
</tr>
<tr>
<td>Depression treatment</td>
<td>969 1872</td>
<td>48 43</td>
<td>1.06 (0.83, 1.35)</td>
<td>0.80 (0.60, 1.06)</td>
<td></td>
</tr>
<tr>
<td>No use of benzodiazepines in depression</td>
<td>830 1578</td>
<td>91 84</td>
<td>1.77 (1.16, 2.69)*</td>
<td>2.35 (1.38, 3.99)*</td>
<td></td>
</tr>
<tr>
<td>Smoking cessation counseling</td>
<td>245 338</td>
<td>29 31</td>
<td>0.84 (0.40, 1.79)</td>
<td>1.29 (0.58, 2.89)</td>
<td></td>
</tr>
<tr>
<td>Diet counseling in at-risk adults</td>
<td>560 1332</td>
<td>31 26</td>
<td>0.96 (0.57, 1.62)</td>
<td>0.96 (0.54, 1.70)</td>
<td></td>
</tr>
<tr>
<td>Exercise counseling in at-risk adults</td>
<td>560 1332</td>
<td>20 19</td>
<td>0.69 (0.40, 1.19)</td>
<td>0.82 (0.44, 1.50)</td>
<td></td>
</tr>
<tr>
<td>Diet counseling in at-risk adolescents</td>
<td>168 448</td>
<td>26 36</td>
<td>0.50 (0.25, 0.99)*</td>
<td>0.45 (0.20, 1.03)</td>
<td></td>
</tr>
<tr>
<td>Exercise counseling in at-risk adolescents</td>
<td>168 448</td>
<td>20 29</td>
<td>0.55 (0.29, 1.02)</td>
<td>0.52 (0.21, 1.31)</td>
<td></td>
</tr>
<tr>
<td>Blood pressure screening</td>
<td>1772 4210</td>
<td>90 86</td>
<td>1.61 (1.09, 2.37)*</td>
<td>2.16 (1.50, 3.11)*</td>
<td></td>
</tr>
<tr>
<td>No screening EKG in low-risk patients</td>
<td>763 1680</td>
<td>99 93</td>
<td>31.2 (8.69, 112)*</td>
<td>9.50 (2.62, 34.4)*</td>
<td></td>
</tr>
<tr>
<td>No screening urinalysis in low-risk patients</td>
<td>1054 2575</td>
<td>87 85</td>
<td>1.87 (0.91, 3.84)</td>
<td>1.55 (0.73, 3.29)</td>
<td></td>
</tr>
<tr>
<td>Appropriate medications in elderly</td>
<td>928 4158</td>
<td>88 88</td>
<td>0.80 (0.49, 1.30)</td>
<td>0.76 (0.46, 1.25)</td>
<td></td>
</tr>
</tbody>
</table>

*aPerformance was defined as the percentage of applicable visits receiving recommended care.
bAdjusted for age, gender, percentage of patients with a high-school diploma in patient’s ZIP code, number of chronic conditions, region, and year
*Significant at \( p < 0.05 \)

 CAD, coronary artery disease; EKG, electrocardiogram; FQHC, federally qualified health centers, federally qualified health center look-alikes, or urban Indian federally qualified health centers; PCP, private practice primary care provider
The authors hypothesize that federal grants to develop stable, viable, locally recruited workforces and mandatory participation in quality improvement and performance measurement may contribute to the current findings. The regulations and guidelines for community health centers that receive Federal 330 FQHC designation include parameters on the frequency and type of quality improvement activities, which may have an influence on the quality of care. Since 2008, the federal government required FQHCs to collect a set of core quality and health outcome data that included diabetes and blood pressure control. Many FQHCs undergo performance reporting to Medicaid MCOs for HEDIS measures that align with many of the quality measures in this analysis. Studies have also demonstrated that quality improvement efforts and demonstration projects have improved chronic disease care management at FQHCs. However, the current study does not evaluate the extent to which these interventions are occurring at FQHCs and look-alikes or whether the independent or cumulative interventions are robust enough to account for the differences found here. Alternatively, FQHC and look-alike practice sizes tend to be larger, a factor associated with higher performance. Future work should monitor the effect of new innovations and patient system redesign on patient outcomes at FQHCs and look-alikes and test whether it is certain practice characteristics, such as larger practice sizes, or performance improvement and provider incentive programs that drive the current results.

The number of FQHCs is expanding, albeit more slowly in the past year. The Affordable Care Act intends to expand the number of FQHCs. The Affordable Care Act (ACA) also intends to expand the number of FQHCs.

### Table 4. Sensitivity analysis for FQHC versus private practice (all providers)

<table>
<thead>
<tr>
<th>Quality measure</th>
<th>No. of patient visits (n)</th>
<th>FQHC</th>
<th>Private practice</th>
<th>FQHC vs private practice, unadjusted OR (95% CI)</th>
<th>FQHC vs private practice, AORc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antithrombotic use in atrial fibrillation</td>
<td>32</td>
<td>654</td>
<td>63</td>
<td>1.13 (0.41, 3.16)</td>
<td>1.55 (0.48, 5.01)</td>
</tr>
<tr>
<td>Ace inhibitor use in congestive heart failure</td>
<td>140</td>
<td>1,369</td>
<td>49</td>
<td>1.87 (1.11, 3.15)*</td>
<td>2.47 (1.47, 4.15)*</td>
</tr>
<tr>
<td>Aspirin use in CAD</td>
<td>142</td>
<td>2,120</td>
<td>58</td>
<td>1.63 (0.87, 3.04)</td>
<td>2.45 (1.18, 5.06)*</td>
</tr>
<tr>
<td>β-Blocker use in CAD</td>
<td>130</td>
<td>2,040</td>
<td>59</td>
<td>1.71 (0.92, 3.19)</td>
<td>2.32 (1.23, 4.38)*</td>
</tr>
<tr>
<td>Statin use in CAD</td>
<td>1,158</td>
<td>7,810</td>
<td>48</td>
<td>1.23 (0.91, 1.66)</td>
<td>1.54 (1.13, 2.11)*</td>
</tr>
<tr>
<td>Inhaled corticosteroids in asthma in adults</td>
<td>401</td>
<td>1,900</td>
<td>59</td>
<td>1.79 (1.16, 2.76)*</td>
<td>1.89 (1.19, 2.99)*</td>
</tr>
<tr>
<td>Inhaled corticosteroids in asthma in children</td>
<td>196</td>
<td>734</td>
<td>66</td>
<td>1.18 (0.73, 1.90)</td>
<td>1.11 (0.60, 2.06)</td>
</tr>
<tr>
<td>Depression treatment</td>
<td>1,054</td>
<td>5,794</td>
<td>48</td>
<td>1.10 (0.88, 1.39)</td>
<td>0.96 (0.73, 1.27)</td>
</tr>
<tr>
<td>No use of benzodiazepines in depression</td>
<td>903</td>
<td>4,699</td>
<td>90</td>
<td>1.60 (1.10, 2.33)*</td>
<td>1.74 (1.11, 2.71)*</td>
</tr>
<tr>
<td>Smoking-cessation counseling</td>
<td>288</td>
<td>809</td>
<td>29</td>
<td>1.37 (0.63, 2.99)</td>
<td>1.90 (0.89, 4.04)</td>
</tr>
<tr>
<td>Diet counseling in at-risk adults</td>
<td>591</td>
<td>2,764</td>
<td>30</td>
<td>1.20 (0.69, 2.08)</td>
<td>1.11 (0.63, 1.95)</td>
</tr>
<tr>
<td>Exercise counseling in at-risk adults</td>
<td>591</td>
<td>2,764</td>
<td>20</td>
<td>0.89 (0.51, 1.54)</td>
<td>0.91 (0.52, 1.60)</td>
</tr>
<tr>
<td>Diet counseling in at-risk adolescents</td>
<td>193</td>
<td>635</td>
<td>22</td>
<td>0.53 (0.26, 1.07)</td>
<td>0.45 (0.20, 0.99)*</td>
</tr>
<tr>
<td>Exercise counseling in at-risk adolescents</td>
<td>193</td>
<td>635</td>
<td>22</td>
<td>0.60 (0.32, 1.11)</td>
<td>0.53 (0.22, 1.28)</td>
</tr>
<tr>
<td>Blood pressure screening</td>
<td>2,074</td>
<td>10,182</td>
<td>89</td>
<td>2.64 (1.94, 3.59)*</td>
<td>2.45 (1.71, 3.52)*</td>
</tr>
<tr>
<td>No screening EKG in low-risk patients</td>
<td>989</td>
<td>6,148</td>
<td>99</td>
<td>11.8 (4.63, 30.3)*</td>
<td>4.30 (1.40, 13.2)*</td>
</tr>
<tr>
<td>No screening urinalysis in low-risk patients</td>
<td>1,188</td>
<td>6,715</td>
<td>86</td>
<td>1.25 (0.72, 2.17)</td>
<td>0.98 (0.52, 1.87)</td>
</tr>
<tr>
<td>Appropriate medications in elderly</td>
<td>956</td>
<td>14,043</td>
<td>88</td>
<td>0.72 (0.45, 1.15)</td>
<td>0.76 (0.48, 1.21)</td>
</tr>
</tbody>
</table>

aIncludes subspecialty physicians such as general surgery, obstetrics and gynecology, orthopedic surgery, cardiovascular disease, dermatology, urology, psychiatry, neurology, ophthalmology
bPerformance was defined as the percentage of applicable visits receiving recommended care.
Adjusted for age, gender, percentage of patients with a high-school diploma in patient’s ZIP code, number of chronic conditions, region, and year
*Significant at p < 0.05
CAD, coronary artery disease; EKG, electrocardiogram; FQHC, federally qualified health centers, federally qualified health center look-alikes, or urban Indian federally qualified health centers

August 2012
to augment this expansion to help FQHCs and look-alikes absorb 20 million of the 32 million anticipated newly insured Medicaid recipients. Part of this expansion will be increased scrutiny, more-robust performance assessments, and greater attention to cost-effectiveness analyses. The current findings reflect care at FQHCs and look-alikes prior to the initiation of the Affordable Care Act and can add to the growing body of literature recognizing the value of FQHCs and look-alikes.

The present study has several limitations. The NAMCS response rates for private physician offices were lower than the FQHCs and look-alikes. Respondent quality may differ from nonrespondents. The higher response rate at FQHC and look-alikes may represent a difference in engagement by FQHC and look-alike physicians with research and evaluation. However, it is unclear how this difference in response rate affects the current findings. Physicians were told in advance the week when the NAMCS would visit to review records. This awareness may have affected physician behavior, but it is unlikely to differentially affect physicians at FQHCs and look-alikes compared to those in private practice.

The quality measures were developed for use in the National Ambulatory Medical Care Survey, and thus are based on single patient visits. Commonly used quality measures such as cancer screening which rely on adherence within a given time frame (e.g., annual fecal occult blood tests for colon cancer screening) cannot be assessed. Although this survey oversampled FQHCs and look-alikes nationally, many of the specific measures had small sample sizes, which may have limited the statistical power to detect differences in performance.

The present study focuses on those community health centers designated as FQHCs and look-alikes. Although these clinics provide care to many patients with Medicaid or no insurance, future work should evaluate whether the current findings are also true in community health centers that do not receive FQHC or look-alike designations and how the performance of these community health centers compare to other care settings such as retail clinics, urgent care centers, tribal clinics, rural health centers, and hospital-based outpatient centers. The current study only assessed the performance of physicians given the public availability of these data. Physician assistants, nurse practitioners, and nurse midwives provide an increasing share of primary care services, especially in low-resource settings. The current analyses were not stratified by whether a community health center was an FQHC, a look-alike, or Urban Indian FQHC as these distinctions were not available in the public version of the NAMCS.

In the setting of healthcare reform, FQHCs and look-alikes may need to accommodate many newly enrolled Medicaid recipients under the Medicaid expansion. The study suggests that in the clinical areas evaluated, FQHCs and look-alikes mostly have no different or higher performance on average than private practice primary care physicians. Future work will need to monitor these and other measures to assess whether appropriated funds will adequately meet the needs of FQHCs and look-alikes to continue to provide quality care, and how new reimbursement models will impact the comparative effectiveness of these clinics.

This work was supported by an AHRQ K08 Mentored Clinical Scientist Development Award, Grant K08 HS018090-01, NIH/NCRR UCSF-CTSI Grant UL1 RR024131, and a Mid-Career Mentoring Award, Grant K24 HL086703.

RSS has a consulting relationship with Mylan Pharmaceuticals and within the past 5 years has consulted for Bayer Corporation and has had grants through Stanford University with Procter and Gamble, GlaxoSmithKline, Toyo Shinyaku, and Wako. No other authors reported financial disclosures.

References


9. Rothkopf J, Brookler K, Wadwha S, Sajovetz M. Medicaid patients seen at federally qualified health centers use hospital services less than those seen by private providers. Health Aff (Millwood) 2011;30(7):1335–42.

